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Abstract—In this paper, we investigate the concept and theory
of all-dielectric metapatterned structures that manipulate electric
and magnetic optical characteristics. A 3-D array of dielectric par-
ticles is designed, where the spheres operate in their magnetic
modes and their couplings offer electric modes. An analytical so-
lution for the problem of plane wave scattering by 3-D array of di-
electric nanospheres is presented. FW multipole expansion method
is applied to express the optical fields in terms of the electric and
magnetic dipole modes and the higher order moments. By enforc-
ing the boundary conditions at the surface of each sphere, with
the use of the translational addition theorem for vector spheri-
cal wave functions, required equations to determine the scattering
coefficients are obtained. Novel materials features in optics are
demonstrated. Electric and magnetic scattering coefficient reso-
nances around the same frequency band are obtained. It is high-
lighted how a metapatterned structure constructed from dielectric
nanosphere unit cells can provide electric and magnetic modes re-
sulting in backward wave phenomenon. A comprehensive circuit
model based on RLC (resistor, inductor, and capacitor) realiza-
tion is presented to successfully analyze the scattering performance
of a dielectric nanosphere. To better understand the physics of an
array of spheres, circuit models for the interactions, and couplings
between spheres are also accomplished. The engineered dispersion
diagram for a 3-D array of identical highly coupled nanospheres is
scrutinized, verifying that the high couplings between spheres can
offer the backward wave characteristics.

Index Terms—Array of nanospheres, backward wave behavior,
dielectric metamaterial, electric resonance, engineered dispersion
diagram, magnetic resonance, metapatterned structure, nanometa-
material.

I. INTRODUCTION

INTERESTS in artificial optical materials are increasing in
the scientific communities [1]–[3]. During the last few years,

there have been considerable efforts to develop metamaterials
in RF/microwave frequencies; however, this progress has not
been as rapid as expected in the optical domain. The goal of this
paper is to theoretically demonstrate the optical performance of
arrays of dielectric nanoparticles enabling coupled electric and
magnetic mode features.

To achieve an optical material with the functionality of in-
terest, one needs to create appropriate electric and magnetic
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dipole modes in a building block unit cell [4], [5]. Essentially,
the electric and magnetic dipole moments are the basic foun-
dations for making metamaterials, and novel arrangements of
these dipole moments can lead to the desired material proper-
ties. Recently, a unique paradigm for metamaterial evolvement
was introduced by Holloway et al. [6], where they designed
a double negative (DNG) metamaterial by embedding an ar-
ray of magnetodielectric spherical particles in a background
matrix. The work of Holloway et al. is based on the mixing
formulas obtained by Lewin [7]. Later on Vendik et al. pro-
posed a more practical approach by utilizing only dielectric
particles, where they arranged two different dielectric spheres
in one unit cell, such that one sphere generates electric dipole
mode while the other establishes magnetic dipole mode [8].
Combining these two features, one can provide a metamate-
rial with both (ε, µ) effective parameters (above the resonant
frequencies, negative constitutive permittivity and permeability
parameters are obtained [4]). However, the low dielectric mate-
rial of the nanospheres in optical regimes generates some diffi-
culties in tuning the terahatz (THz) DNG medium, if two sets of
nanospheres are used. In this study, we use one set of dielectric
nanoparticles to accomplish the backward wave behavior in THz
spectrum.

Over the past few years, there has been much improve-
ment in the fabrication, design, and modeling of nanostruc-
tures [9]. Most of the current modeling techniques of nanostruc-
tures are based on the discrete dipole approximation (DDA),
finite-difference time domain (FDTD), finite-element method
(FEM), and T-matrix [10]–[16]. Numerical methods can be ex-
tremely accurate and comprehensive, but they are somehow
time-consuming. Theoretical approaches have the great advan-
tage of providing fast solutions, where they can illustrate the
physics and concept of nanostructures at the same time. As
an example of efficient techniques, Alam et al. [17], [18] in-
vestigated an accurate analytical method based on the circuit
model analogy to calculate the resonance frequency and scatter-
ing parameters of a single plasmonic particle. Hanson et al. [19]
suggested another efficient approach for obtaining the electro-
magnetic interactions between a carbon nanotube and an electri-
cally small plasmonic sphere (where the sphere is characterized
by its dipole moment). The focus of this paper is to apply an
analytical method based on the electric and magnetic dipole
modes to characterize the performance of a 3-D array of dielec-
tric nanoparticles and understand their unique physical features.
The characteristic equations and electric and magnetic resonant
phenomena for the nanostructures are derived. An intuitive cir-
cuit analogy is also exploited to obtain a better understanding
of the resonant behavior of the array of spheres.

1536-125X/$26.00 © 2009 IEEE
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The 3-D array of gallium phosphide (GaP) particles is tailored
to establish backward wave phenomena. The objective is to
create electric and magnetic dipole modes by utilizing 3-D array
of nanospheres. Hence, the problem of multiple scattering of a
plane wave by an array (either finite or infinite) of dielectric
spheres is solved, with the use of multipole expansion method
and the translational addition theorem for the vector spherical
wave functions [20]–[22]. It is shown that if the particles are
small enough or the frequency is such that the magnitudes of
higher order modes are negligible compared to dipole modes,
dipole modes give accurate descriptions of the traveling waves
in the array. We illustrate that by bringing the dielectric spheres
close to each other, the couplings between them are increased
such that both electric and magnetic resonances can be achieved
around the same frequency region.

Accurate closed-form solutions for the scattering coefficients
are obtained by utilizing RLC (resistor, inductor, and capacitor)
circuit modeling. The developed model intuitively describes the
physics of the scattering coefficients, and their dependence on
the material properties and the array configuration. The pro-
posed circuit model is based on the theoretical derivations and
confirmed by comparing it with the exact solutions.

Dispersion diagram characteristics for an array of dielec-
tric spheres are also attained and backward wave performance
is explored. It is highlighted how a metamaterial constructed
from identical nanospheres has the potential to provide a
medium with coupled electric and magnetic dipole moments.
The formulations and results presented in this paper will be of
great importance for characterizing all-dielectric metamaterial
nanostructures.

II. SINGLE-SPHERE ELECTRIC AND MAGNETIC DIPOLE MODES

In this section, we highlight the concept of electric and mag-
netic dipoles creation by using dielectric spheres. To achieve a
functional optical metamaterial with desired parameters, it is re-
quired to first create the appropriate electric and magnetic dipole
moments and then tailor them to the applications of interest. The
electric and magnetic dipoles are envisioned as the alphabet for
making new structures [5].

To provide a physical insight of dipole mode creation by using
dielectric particles, let us begin with the problem of a plane wave
and a dielectric sphere centered at (rp , θp , φp). We assume that
a sphere with radius a and dielectric constant εr is embedded in
free space (in general, it can be any other background matrix).
A plane wave excitation with the propagation vector k that lies
in the xz plane with harmonic time dependence exp (jωt) is
assumed. The electric field is considered to be y-polarized. The
incoming incident field on the sphere can be expanded in terms
of spherical wave vectors of the first kindM(1)

mn andN(1)
mn [20]

Ei
p =

∞∑
n=1

n∑
m=−n

[Aip
mnN(1)

mn (rp , θp , φp)

+ Bip
mnM(1)

mn (rp , θp , φp)] (1a)

Fig. 1. Vector spherical wave functions field lines. (a) M1 field lines. (b) N1
field lines.

ηHi
p = −j

∞∑
n=1

n∑
m=−n

[Aip
mnM(1)

mn (rp , θp , φp)

+ Bip
mnN(1)

mn (rp , θp , φp)] (1b)

where η is the free space intrinsic impedance and the incident-
field expansion coefficients are derived in [23]. For the special
case of end-fire incidence, we have [24]

Aip = Bip =
−1
jn

2n + 1
n(n + 1)

δm,1e
−jk.rp . (2)

Following the same routine, the scattered field can be repre-
sented as a weighted sum of spherical wave vector of the third
kind M(3)

mn and N(3)
mn . Asp

mn and Bsp
mn are considered the un-

known scattered coefficients to be obtained by matching the
boundary conditions at the surface of the nanosphere. Note that
M(1)

mn (M(3)
mn ) and N(1)

mn (N(3)
mn ) are the spherical vector wave

functions representing the incoming (outgoing) waves associ-
ated with spherical Bessel (Hankel) functions.

It must be recalled that spherical vector wave function M has
the circular field lines, that is to say, the radial components of all
M functions are zero. Hence, if only the Asp

mn coefficients are
excited, the field has a radial component of E(E ∝ N), where
the magnetic field is always perpendicular to the radial vector
(H ∝ M). In other words, the distribution of electromagnetic
(EM) or optical fields is such as it would be produced by elec-
tric charges on the surface of the sphere. Therefore, Asp

mn can
be envisioned as electric scattered coefficients [24]. If, on the
other hand, only Bsp

mn are excited, the field is such as would
be produced by oscillating magnetic charges on the surface of
the sphere and the field is said to be of magnetic type. Hence,
Bsp

mn are the magnetic scattered coefficient [24]. The field lines
for M11 and N11 are shown in Fig. 1. Manifestly, the near-field
pattern of M11 is very similar to the electric field pattern of a
magnetic dipole, while the near-field pattern of N11 resembles
to the electric field pattern of an electric dipole. Hence, if only
Asp

11 is excited, the nanosphere is equivalent to an electric dipole
moment, where if only Bsp

11 exists, the nanosphere reveals the
behavior of a magnetic dipole.

Note that the quantities in (1) are defined with respect
to a local spherical coordinate system. Forcing the boundary
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conditions at the surface of the nanosphere directs us to

Asp
mn = ςn (a)Aip

mn (3a)

Bsp
mn = ξn (a)Bip

mn (3b)

where ςn (a) and ξn (a) are the normalized Mie electric and
magnetic scattering coefficients for a single dielectric sphere
[21], [24]. The scattering coefficients are very important in any
application that involves the creation and use of electric and
magnetic moments. Their resonances are the principal param-
eters for manipulating the performance of a nanosphere. The
formal mathematical solutions for these scattering coefficients
are known for years; however, the physics of these parameters
may not be grasped efficiently. It is then important to develop
a model that can easily explain the physical features of these
coefficients [25]. In the next section, we present a circuit model
to successfully tailor the scattering coefficients. This idea was
initially proposed by Alam et al. [18], where they used RLC
circuit realization for modeling the scattering coefficients of a
plasmonic nanosphere.

A. RLC Modeling

Due to the nature of spherical Bessel functions and their
derivatives, Mie’s solutions in its present form may not be
suitable to characterize the physics of the problem. Express-
ing the scattering coefficients in terms of polynomial contin-
ued fractions helps to effectively elucidate the optical scat-
tering and resonance properties of a nanostructure. Here,
we present an accurate circuit model based on the RLC re-
alization for the scattering coefficients of a single dielec-
tric sphere in the optical spectrum. Basically, we reduce
the scattering problem to a circuit type problem. Note that
the scattering coefficients are in fact the input impedance
of the circuit model. Let us first expressed the scattering
coefficients as

ςn (a) = − 1
1 − jXE (n, ka, εr )

(4a)

ξn (a) = − 1
1 − jXH (n, ka, εr )

(4b)

where XE and XH are

XE (n, ka, εr )

=
yn (ka)(kpajn (kpa))′ − εr jn (kpa)(kayn (ka))′

jn (ka)(kpajn (kpa))′ − εr jn (kpa)(kajn (ka))′
(5a)

XH (n, ka, εr )

=
jn (kpa)(kayn (ka))′ − yn (ka)(kpajn (kpa))′

jn (kpa)(kajn (ka))′ − jn (ka)(kpajn (kpa))′
(5b)

jn and yn are the spherical Bessel and Neumann functions,
respectively. Without loss of generality, in this paper, we only
investigate the circuit models for the first electric and magnetic
scattering coefficients. In order to derive an accurate simple
model for the coefficients, the spherical Bessel and Neumann
functions are evaluated by using the rational function expansions
[26]. Since higher order terms contribute negligible values to
the scattering coefficients, we only keep the terms with order of
eight or less (for ka < 1). If we define x = ka and m =

√
εr ,

we end up with, as shown (6a) and (6b), at the bottom of this
page, where

a1 =
4m2(35m4 + 405m2 + 819)

−13m4(5m2 + 36)
(7a)

a2 =
216(m6 + 20m4 + 49m2 − 70)

13m4(5m2 + 36)
(7b)

a3 =
6048(m4 + 9m2 − 10)
−13m4(5m2 + 36)

(7c)

a4 =
60480(m2 + 2)

13m4(5m2 + 36)
(7d)

e1 = − 20(m2 − 1)
(m4 − 6m2 + 5)

(7e)

e2 =
120

(m4 − 6m2 + 5)
. (7f)

For simplicity, we refer to the denominator coefficients of (6a)
and (6b) as b1 − b2 and f1 . To derive explicit RLC models,
the rational functions given by (6) are expanded as continued
fraction forms of polynomial terms. Hence, the scattering co-
efficients are achieved as the input impedances of RLC ladder
types circuits (see also Fig. 2)

ς1(a) = − 1
1 + jX1e + 1/(jX2e + (1/jX3e))

(8a)

ξ1(a) = − 1
1 + jX1h + (1/jX2h )

(8b)

XE (1, x,m) ≈
(

65
144x3

) (
m2(5m2 + 36)

5m4 + 13m2 − 13

)

× x8 + a1x
6 + a2x

4 + a3x
2 + a4

x4 − (105840(m4 − 1)/756m2(5m4 + 13m2 − 13))x2 + (1058400(m2 − 1)/756m2(5m4 + 13m2 − 13))

(6a)

XH (1, x,m) ≈ −21(m4 − 6m2 + 5)
4m4x5 × x4 + e1x

2 + e2

x2 − (14(m2 − 1)/m4)
(6b)
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Fig. 2. RLC schematics for Mie scattering coefficients. (a) Electric scattering coefficient. (b) Magnetic scattering coefficient.

Fig. 3. Electric scattering coefficients for a single GaP sphere of radius a = 85 nm and εr = 12.25. Comparison between RLC ladder type model versus exact
Mie solution. (a) Magnitude. (b) phase.

where

X1e =
65

144x3

m2(5m2 + 36)
5m4 + 13m2 − 13

×
(
x4 + (a1 − b1)x2 + a2 + b2

1 − b2 − a1b1
)

(9a)

X2e =
65

144x3

m2(5m2 + 36)
5m4 + 13m2 − 13

(
x2

c1
+

b1c1 − c2

c2
1

)
(9b)

X3e =
65

144x3

m2(5m2 + 36)
5m4 + 13m2 − 13

(c1x
2 + c2)

×
(
−c1

b1c2
+

1
b2

+
c2
1

c2
2

)
(9c)

X1h = − 21(m4 − 6m2 + 5)
4m4x5 (x2 + (e1 − f1)) (9d)

X2h = − 21(m4 − 6m2 + 5)
4m4x5

x2 + f1

f 2
1 + e2 − e1f1

(9e)

and

c1 =a1(b2
1 − b2) − a2b1 + a3 − b1(b2

1 − 2b2) (10a)

c2 =a1b1b2 − a2b2 + a4 − (b2
1 − b2)b2 . (10b)

It is worth mentioning that X1e − X3e and X1h − X2h denote
the reactance parts of the scattering coefficients. Depending

on the material property (m) and frequency, they can be either
inductive or capacitive. Note that if mka � 1 and ka > 1, these
approximations might not be valid.

B. Simulation Results

To evaluate the accuracy of our approach, we compare the
results of RLC technique with the exact Mie solutions. For a
nano-GaP sphere with εr = 12.25 and radius of 85 nm, the nor-
malized Mie scattering coefficients are depicted in Figs. 3 and
4. As it is illustrated, there is a negligible difference between the
RLC modeling and the exact Mie solutions, indicating that our
circuit model can properly predict the behavior of the scattering
coefficients for a dielectric sphere. Note that in this scenario,
ka is between 0 and 1, and m is as high as

√
12.25. It is worth

highlighting that these circuit models are obtained only for the
first electric and magnetic scattering coefficients.

The capability of representing the scattering coefficients with
RLC circuit models allows one to apply the well-known con-
cepts in circuit theory to effectively design required elements
for providing desired electric and magnetic resonances.

It is interesting to mention that Figs. 3 and 4 show that at the
magnetic resonance (f = 485 THz), Asp

11 < 1
2 Bsp

11 or ς1(a) <
1
2 ξ1(a), namely at the resonance of the magnetic scattering co-
efficient, the nanosphere behaves mostly as a magnetic dipole



586 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 2009

Fig. 4. Magnetic scattering coefficients for a single GaP sphere of radius a = 85 nm and εr = 12.25. Comparison between RLC ladder type model versus exact
Mie solution. (a) Magnitude. (b) phase.

(E ∝ M), where the coupling between low-dielectric spheres
has increased electric scattering co-efficient. The same argument
can be done for the electric resonance at f = 643 THz (however,
here the plots are demonstrated only in the frequency spectrum
of interest). In summary, the dielectric nanospheres can pro-
vide electric and magnetic dipole moments at the electric and
magnetic resonances of the scattering coefficients. Novel combi-
nations of these modes can offer desired metamaterial features.

III. META PATTERNED ARRAY OF DIELECTRIC NANOSPHERES

A 3-D array of spheres has the potential to manipulate the
coefficients of M and N in a novel fashion that the metamate-
rial with functionality of interest can be achieved. In this sec-
tion, we develop the required formulations for characterizing
the performance of a 3-D array of dielectric spheres. Full-wave
electric and magnetic multipole couplings are considered for
the performance modeling. The problem of multiple scattering
is solved by matching the boundary conditions at the surfaces
of all spheres. To impose the boundary conditions at the surface
of each sphere (the reference sphere), the local coordinates of
other spheres are translated to the local coordinate of the refer-
ence sphere using the additional translation theorem for vector
spherical wave functions [22], [23]. By utilizing these, the de-
sired system of linear equations for the scattering coefficients
is achieved. We also obtain the engineered dispersion relation
for an infinite 3-D array of dielectric spheres by generalizing
this concept. Moreover, we demonstrate RLC circuit theory to
model the interactions and couplings between spheres. Modern
nanomaterial performances are also highlighted.

A. Modeling and Analysis

The geometry of the 3-D array of nanospheres is depicted
in Fig. 5. Each nanosphere is represented with dielectric con-
stant of εr and radius a. The spheres are centered at x =
lxhx, y = ly hy , and z = lz d, where lx = ±1,±2,±3, . . . ±
Lx, ly = ±1,±2,±3, . . . ± Ly , and lz = 0, 1, 2, . . . , Lz .

The goal is to determine the scattering coefficients for ev-
ery sphere by forcing the boundary conditions at the surface

Fig. 5. Configuration of an array of dielectric nanospheres.

of that particle. To implement the boundary conditions at the
surface of each sphere (e.g., pth sphere), the outgoing scattered
fields from all other spheres are expressed in the local coor-
dinate of the reference sphere (pth sphere). The continuity of
the tangential electric and magnetic fields is applied by using
the spherical vector translational addition theorem [22]. The so-
lution for the unknown scattering coefficients is then obtained
as [23]

Asp
mn = ςn (a)

(
Aip

mn +
∑

q

q �=p

∞∑
ν=1

ν∑
µ=−ν

[
Aµν

mn (dpq , θpq , φpq )Asq
µν

+ Bµν
mn (dpq , θpq , φpq )Bsq

µν

])
(11a)

Bsp
mn = ξn (a)

(
Bip

mn +
∑

q

q �=p

∞∑
ν=1

ν∑
µ=−ν

[Aµν
mn (dpq , θpq , φpq )Bsq

µν

+ Bµν
mn (dpq , θpq , φpq )Asq

µν ]

)
. (11b)

where the summation over q is the summation on all nanopar-
ticles except the reference sphere, dpq is the center distance
between the pth nanosphere and the qth one [23]. Aµν

mn and
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Fig. 6. Electric scattering coefficients for a GaP nanosphere with εr = 12.25 and a = 85 nm. (a) Normalized Mie scattering coefficient for the first three
terms. The performance of electric scattering coefficient for a sphere inside a finite array with Lx = 4, Ly = 4, Lz = 2, and unit cell size of d/a = 2.23 and
hx = hy = 2.1a. (b) Magnitude. (c) Phase.

Fig. 7. Magnetic scattering coefficients for a GaP nanosphere with εr = 12.25 and a = 85 nm. (a) Normalized Mie scattering coefficient for the first three
terms. The performance of magnetic scattering coefficient for a sphere inside a finite array with Lx = 4, Ly = 4, Lz = 2, and unit cell size of d/a = 2.23 and
hx = hy = 2.1a. (b) Magnitude. (c) Phase.

Bµν
mn are the translational addition theorem coefficients given

in [22]. Equations (11) are a coupled set of complex linear
algebraic equations, and should be solved simultaneously to
yield the unknown scattering coefficients. In addition, the infi-
nite series must be truncated to a finite number n = ν = N and
m = µ = M .

If the spheres are small enough or the frequency is such that
the magnitude of higher order modes are negligible compared
to the magnitude of the first electric and magnetic modes, only
the dipole scattered fields are excited. And thus the scattered co-
efficients can be well approximated by only considering n = 1.
To verify this idea, we analyze the performance of the scattered
coefficients for an array of dielectric nanospheres with radius of
a = 85 nm, εr = 12.25, Lx = Ly = 4, and Lz = 2. A plane,
wave excitation having a y-polarized electric field that propa-
gates in the z-direction is assumed. The results are described
in Figs. 6 and 7. As it is shown in the frequency bands where
ςn (a), ξn (a)|n>1 � ς1(a), ξ1(a), one can assume that only the
first electric and magnetic dipole modes are excited. It is worth
noting that Figs. 6 and 7 depict the electric and magnetic scat-
tered coefficients for a sphere located in the middle of the array
(lx = ly = 0, lz = 1). In the followings, we assume that either

the spheres are sufficiently small or the frequency is such that
the spheres’ scattering can be treated with only dipole vector
spherical waves.

We now address the potential applications of electric and
magnetic dipoles for developing novel metamaterials by tai-
loring their scattering coefficients. As illustrated earlier, based
on the Mie series, dielectric spheres can offer electric and mag-
netic dipole moments and higher order modes. To obtain a back-
ward wave behavior, one should create the electric and magnetic
dipole resonances around the same frequency regime. Here, we
investigate the feasibility of making an array of identical dielec-
tric spheres for nanometamaterial development. Spheres operate
in their magnetic resonant modes, and by increasing their cou-
plings, electric modes are created. Hybrid modes (combination
of electric and magnetic dipole moments) will manipulate a
metapatterned structure with the desired figures of merit.

The scattered coefficients are the key parameters that dic-
tate the performance of the dielectric resonator. Therefore, to
generate the backward wave metamaterial behavior using one
set of dielectric spheres, one should tune the resonances of the
electric scattering coefficients to occur at the resonances of the
magnetic scattering coefficients. For a sphere inside an array,
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the characteristic frequencies are derived solving (11), thus, by
changing the array configuration, one can achieve the electric
and magnetic resonances around the same frequency region.

To show how the array formation can control the performance
of the electric and magnetic resonances, we consider a periodic
array of dielectric nanospheres. The array is taken to be infinite
in the x- and y-directions (Lx = Ly = ∞) and finite in the
z-direction. The plane wave incident on the array is set to be
y-polarized with the z- directed propagation vector k. Since
we are exploring the traveling waves supported by the periodic
array of spheres, the spheres’ scattering coefficients in a layer
are identical. Hence, we have a linear system of 2(Lz + 1)
equations to be solved for the electric and magnetic scattered
coefficients. For l ∈ {0, 1, . . . , Lz}, we obtain (the frequency is
considered such that only the first dipole modes can be excited)

[Λ]

[ [
Asl

11
]

[
Bsl

11
]
]

=

[ [
ς1(a)Ail

11
]

[
ξ1aBil

11
]

]
(12)

where

[Λ] =

[
I −

[
ς1(a)Σllz

]
−

[
ς1(a)Σ′

llz

]
−

[
ξ1(a)Σ′

llz

]
I −

[
ξ1(a)Σllz

]
]

(13a)

Σllz =
∞∑

l y = −∞
(lx ,ly ,lz ) �=(0,0,l)

∞∑
lx =−∞

h
(2)
0 (kr) − 1

2
h

(2)
2 (kr)P2(cos θ)

(13b)

Σ′
llz =

∞∑
l y = −∞

(lx ,ly ,lz ) �=(0,0,l)

∞∑
lx =−∞

−3j

2
h

(2)
1 (kr)P1(cos θ) (13c)

r = lxhxx̂ + ly hy ŷ + (lz − l)dẑ (13d)

where Asl
11 and Bsl

11 represent the electric and magnetic scattered

coefficients for the layer denoted by l and I is the identity ma-
trix. Solving the earlier matrix equation, the unknown scattering
coefficients are achieved. Primarily, Σllz can be envisioned as
the interactions between the electric (magnetic) fields of the
reference nanosphere [the sphere centered at (0, 0, l)] with the
electric (magnetic) fields of all other spheres. For l = lz , Σll

(self interaction) denotes the interactions between the electric
(magnetic) fields of the reference nanosphere with electric (mag-
netic) fields of all other spheres located at the same plane as
the reference sphere (l). In the same manner, Σ′

llz
is the cou-

pling between the magnetic (electric) fields of reference sphere
with the electric (magnetic) fields of all other nanospheres. It
is worth mentioning that Σ′

ll (self coupling) is zero because
P1(cos θ)|l= lz = 0. Note that if Σllz and Σ′

llz
are zero, then [Λ]

is simply the identity matrix, meaning that if there is no interac-
tion or coupling between the spheres, the scattering coefficients
are determined by Mie equations.

To better understand the physics of the coupling coefficients
and their impact on the metamaterial performance, we will in-
vestigate the RLC circuit model for these parameters. By im-
plementing the circuit analogy and acceleration techniques [27],
[28], the summations defined in (13) can be realized as the input

Fig. 8. RLC circuit symbolizing the interactions between spheres (l �= lz ).
Equivalent circuits for Σl l , Σl l z , and Σ′

l l z
.

impedances of RLC type circuits. For a cubic unitcell with
d = hx = hy , where (l �= lz ) we end up with (the schematics of
these circuits are depicted in Fig. 8.)

Σll = Rll(kd) + jXll(kd) (14a)

Σllz = jXllz (kd, |l − lz |) (14b)

Σ′
ll = 0 (14c)

Σ′
llz = R′

llz
(kd, |l − lz |) + jX ′

llz
(kd, |l − lz |) (14d)

where for 0 ≤ kd ≤ π

Rll(kd) ≈ 3π

(kd)2 − 1 (15a)

R′
llz

(kd, |l − lz |) ≈
3π

(kd)2 cos(|l − lz |kd) (15b)

Xll(kd) ≈ 3
4kd

[
1.2316 + 3 ln

(
kd

4π

)
+

1
6

(
2π

kd

)2]

−
3 ln

(
2 sin(kd/2)

)
2kd

+
CL2(kd)

(kd)2 (15c)

Xllz (kd, |l − lz |) ≈ − 12π√
2(kd)3

e−|l−lz |2π
√

2e|l−lz |
√

2 (k d ) 2

8 π

(15d)

X ′
llz

(kd, |l − lz |) ≈ − 3π

(kd)2 sin(|l − lz |kd) (15e)

and CL2(kd) is the Clausen function of the second kind. Equa-
tion (15d) exhibits that Xllz is always negative. This reveals
that the interaction factor (Xllz ) between electric (magnetic)
fields of the reference sphere and electric (magnetic) fields of
the spheres in other planes (rather than the self plane) are of
capacitive type. Also, as can be seen from (15b), (15e), Σ′

llz
has

the kind of sinusoidal variation with kd.
For the verification purposes we compare, the exact solutions

(13) and the RLC circuit models in Figs. 9 and 10. A very good
agreement is observed.

Circuit models presented here allow one to intuitively explain
the optical properties of a periodic array of nanospheres. As an
instance, for a cubical array of spheres with only one layer in the
direction of propagation (Lz = 0), the scattering coefficients for
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Fig. 9. Performance of the interaction coefficients Σl l z . Comparison between the exact solutions and RLC circuit model. (a) Rll (kd). (b) Xll (kd). (c)
Xllz (kd, 1) (l �= lz ).

Fig. 10. Performance of the coupling coefficients Σ′
l l z

. Comparison between the exact solutions and RLC circuit model (l �= lz ). (a) R′
l l z

(kd, 1). (b)
X ′

l l z
(kd, 1).

all spheres are identical (an end-fire incidence is considered)

As1
11 =

Ai1
11

1
ς1 (a) − Σ00

=
Ai1

11

−
[
1 + R00(kd)

]
+ j

[
XE (1, ka, εr ) − X00(kd)

]
(16a)

Bs1
11 =

Bi1
11

1
ξ1 (a) − Σ00

=
Bi1

11

−
[
1 + R00(kd)

]
+ j

[
XH (1, ka, εr ) − X00(kd)

] .

(16b)

If the aim is to accomplish both electric and magnetic resonances
around the same region, then XE = X00 and XH = X00 . In
other words, for a specified structure, XE (ka) should be equal to
XH (ka), which is intrinsically impossible for a dielectric sphere
(6). This observation (16) also reveals that to obtain both reso-
nances around the same frequency band, the couplings between
electric (magnetic) fields of reference sphere with the magnetic
(electric) fields of the other spheres (Σ′

llz
) are also necessitated

in addition to the interactions between electric (magnetic) fields

of the reference spheres and electric (magnetic) fields of the
other spheres.

To better understand the effect of couplings between
nanospheres on the scattered coefficients, a three-layer (Lz = 2)
array of dielectric spheres is investigated. Notice that the eigen-
frequencies of the electric and magnetic scattered coefficients
are achieved by equating the determinant of the [Λ] to zero.
Referring to (15d), it can be shown that Σ01 and Σ02 have small
contributions to the determinant of [Λ] compared to the other
elements. Hence, the characteristic equations (the determinant
of [Λ]) can be well approximated by

∆1 =(1 − ς1(a)Σ00)(1 − ξ1(a)Σ00)

+ 2ς1(a)ξ1(a)Σ′2
01 + ς1(a)ξ1(a)Σ′2

02 (17a)

∆2 =(1 − ς1(a)Σ00)(1 − ξ1(a)Σ00). (17b)

It is worth mentioning that the resonant frequencies of the
nanometamaterial can be predicted from the characteristic equa-
tions when ∆1 = 0 or ∆2 = 0. Equations (17) are, in fact, the
closed-form solutions to characterize the resonance phenom-
ena in nanostructures composed of three layers (Lx = Ly = ∞
and Lz = 2) of dielectric spheres. These closed-form models
help to intuitively explain the scattering behavior of dielectric
spheres inside a 3-D array of spheres. In addition to that, the
derived closed-form solutions can highlight the dependence of
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Fig. 11. Performance of a periodic array of GaP nanospheres with three layers in the direction of propagation (Lz = 2) and εr = 12.25, a = 85 nm, having unit
cell size of d = 2.23a and hx = hy = 2.1a. (a) Magnitude of 1./∆1 and 1./∆2 defined in (17). (b) Electric scattering coefficients (magnitude). (c) Magnetic
scattering coefficients (magnitude).

Fig. 12. Performance of a periodic array of GaP nanospheres with three layers in the direction of propagation (l �= lz ) and εr = 12.25, a = 85 nm, having unit
cell size of d = 2.23a and hx = hy = 2.1a. (a) Phases of 1/∆1 and 1/∆2 defined in (17). (b) Electric scattering coefficients (phase). (c) Magnetic scattering
coefficients (phase).

the resonance behavior on dielectric material, spheres sizes, and
the array configuration.

If the intersphere spacings are large enough, then the interac-
tions between spheres (Σ00 ,Σ′

01 and Σ′
02) are so small that Λ

simplified to the identity matrix, therefore, the eigenfrequencies
are accurately described with electric and magnetic resonance
frequencies of a single nanosphere defined in (3).

B. Optical Performances of Array of Coupled Spheres

Couplings between the spheres can offer interesting behav-
iors. Basically, by making the spheres closer to each other, the
couplings between them are increased, and can be optimally
combined with the magnetic resonances of the spheres causing
the electric and magnetic resonances to occur around the same
frequency band. To investigate the impact of couplings between
spheres, the performance of scattered coefficients for a 3-D array
of highly coupled nanospheres is scrutinized. The scattering co-
efficients for a three-layer array of GaP (εr = 12.5) nanospheres
with radius of a = 85 nm, d/a = 2.23, and the periodicity of
hx/a = hy/a = 2.1 are depicted in Figs. 11 and 12. As ex-
pected, the array configuration manipulate the electric and mag-
netic scattering coefficients for all layers to have the resonance
behavior around the same frequency region. Figs. 11(b) and (c)
establish that both electric and magnetic scattering coefficients

for all layers resonate around f = 520 THz (λ = 576.9 nm).
It is worth mentioning that at this frequency, a/λ = 0.14,
d/λ = 0.33, and the periodicity in the transverse direction
is hx/λ = hy/λ = 0.31. The magnitude of 1/∆1 and 1/∆2
[characteristic equations defined in (17)] are represented in
Fig. 11(a), where it can be seen that, at f = 520 THz where
electric and magnetic scattering coefficients resonate, ∆1 tends
to zero (1/∆1 goes to resonance). From Fig. 11(a), one can
observe that, (17a) precisely determines the location of the res-
onance frequency, which indicates that for a highly coupled
array of dielectric spheres, all the interactions and couplings
(Σ00 ,Σ′

01 and Σ′
02) between one layer and others (including

itself) are inevitable. On the other hand, if (17b) anticipates
the locations of the resonance frequencies, only interactions
between electric (magnetic) fields of each layer with its elec-
tric (magnetic) field (self interaction) would be taken into the
account.

Fig. 12 represents the phase behaviors of the characteristic
equations and the scattering coefficients. Fig. 12 (b) and (c) ex-
hibits negative slopes for the phases of scattering coefficients
after the resonance, which can be interpreted as a result of back-
ward wave performance. Our simulation results demonstrate that
using an array of highly coupled nanospheres, one can achieve
backward wave characteristics.
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Fig. 13. Electric scattering coefficients behavior for a periodic array of GaP nanospheres with three layers in the direction of propagation, and εr = 12.25,
a = 85 nm, d = 2.23a versus different unit cell sizes in the transverse direction (only the middle layer’s scattering coefficient is plotted). (a) Magnitude. (b)
Phase.

Fig. 14. Magnetic scattering coefficients behavior for a periodic array of GaP nanospheres with three layers in the direction of propagation, and εr = 12.25,
a = 85 nm, d = 2.23a versus different unit cell sizes in the transverse direction (only the middle layer’s scattering coefficient is plotted). (a) Magnitude. (b)
Phase.

It can be deduced that, the backward phenomena are cre-
ated because of the high coupling between the nanospheres.
To verify this further, the performance of the scattered coeffi-
cients decrease the coupling (enlarging the unit cell sizes) is also
analyzed. Figs. 13 and 14 present the electric and magnetic scat-
tering coefficients for a three-layer array of GaP nanospheres
with a = 85 nm, d/a = 2.23, and hx = hy . As observed, for
hx/a = hy/a ≥ 4, the electric scattering coefficients do not
provide the resonant behavior at the resonance of magnetic scat-
tering coefficients. Also, Figs. 13(b) and 14(b) exhibit that by
increasing the transverse distance, the phases of scattering co-
efficients do not show the negative slope performances after
the resonance, even for hx/a = hy/a = 3. These signify that,
to provide the backward wave phenomena, the coupling in the
transverse direction should be high enough. Figs. 15 and 16
illustrate the dependence of scattering coefficients on d, given
hx and hy . The magnitude of electric and magnetic scattering
coefficients show the resonance performance around the same
frequency spectrum for all the cases presented in Figs. 15(a)
and 16(a); however, the negative slope of the phase switches to
positive slope for d/a = 4.

It is interesting to note that by decreasing the periodicity in
the transverse direction (hx and hy ), increasing the coupling,
the electric resonance is moved back over the frequency (and

appears in the spectrum of interest) where the magnetic reso-
nance is slightly moved forward, where for an optimal design,
both modes occur around the same frequency band. Making the
spheres closer in the transverse plane, one can envision increas-
ing the capacitances between the dielectric spheres. This has a
positive effect for electric mode creation while slightly perturbs
the magnetic mode development. By increasing the periodic-
ity in the longitudinal direction (d), both electric and magnetic
resonances are moved in the same direction toward the lower
frequency (for large d, the brag modes play important roles in
the performance).

To better demonstrate the progression of backward wave be-
havior, we also explore the dispersion diagram for an infinite
array of spheres in the following section.

IV. DISPERSION DIAGRAM

Dispersion diagram of a periodic configuration can provide
significant physical features. In this section, the dispersion per-
formance of the 3-D array of dielectric nanospheres is charac-
terized. The array is considered to be infinite in all directions
(Lx = Ly = ∞, lz = 0,±1, . . . ,±∞). We take the z-axis to be
the array axis. It is assumed that the array can support a plane
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Fig. 15. Performance of electric scattering coefficients for a periodic array of GaP nanospheres with three layers in the direction of propagation, and εr = 12.25,
a = 85 nm, hx = hy = 2.23a versus different unit cell sizes in the propagation direction (only the middle layer’s scattering coefficient is depicted). (a) Magnitude.
(b) Phase.

Fig. 16. Performance of magnetic scattering coefficients for a periodic array of GaP nanospheres with three layers in the direction of propagation, and εr = 12.25,
a = 85 nm, hx = hy = 2.23a versus different unit cell sizes in the propagation direction (only the middle layer’s scattering coefficient is depicted). (a) Magnitude.
(b) Phase.

Fig. 17. Dispersion diagrams characteristics for the 3-D array of nanospheres. (a) Comparison between our approach and the technique introduced in [29] for an
array of nanospheres with εr = 20, a = 0.5 cm, and cubical unit cell with a/d = 0.45. A very good match is achieved. (b) Engineered dispersion diagram for an
array of GaP nanospheres with εr = 12.25, a = 85 nm, and unit cell size with d/a = 2.23 and hx = hy = 2.1a. The second branch shows the backward wave
behavior.

wave with the propagation vector β, where

β = βxx̂ + βy ŷ + βẑ. (18)

To obtain the dispersion diagram, the eigenvalue problem is
solved, namely we force the incident expansion coefficients
to be zero (Aip

mn = Bip
mn = 0). Inasmuch we have a uniform

array of infinite dielectric nanospheres, the electric and magnetic
scattering coefficients due to a plane wave with the propagation
vector β are identical except for a phase shift in the direction of
propagation

(A/B)sp
mn = (A/B)sq

mne−jβ.dqp . (19)
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Substituting (19) in (11), we end up with

As0
mn = ςn (a)


∑

q

q �=0

∞∑
ν=1

ν∑
µ=−ν

e−jβ.d0q [Aµν
mn (dpq , θpq , φpq )As0

µν

+Bµν
mn (dpq , θpq , φpq )Bs0

µν ]


 (20a)

Bs0
mn = ξn (a)


∑

q

q �=0

∞∑
ν=1

ν∑
µ=−ν

e−jβ.d0q [Aµν
mn (dpq , θpq , φpq )Bs0

µν

+Bµν
mn (dpq , θpq , φpq )As0

µν ]


 (20b)

The desired dispersion equation is then achieved resolving the
earlier system of equations for As0

mn and Bs0
mn . Notice that (20)

is exact and no approximation is taken into the account. More-
over, the derived equations are general, and the dispersion per-
formance for both normal and oblique incidence waves can be
accomplished.

Now, if the nanospheres are sufficiently small or the frequency
is such that pairs of crossed electric and magnetic dipoles are
enough to model the sphere, the earlier linear system can be
simplified further. For the special case of end-fire incidence

(A/B)s0
11 = (ς1(a)/ξ1(a))

∑
q

q �=0

e−jβ ẑ .d0q
[
(A/B)s0

11

×A11
11(d0q , θ0q , φ0q )+(B/A)s0

11B
11
11 (d0q , θ0q , φ0q )

]
(21a)

One can numerically solve (21) for βd, given values of k using,
for instance, a secant search procedure. It is worth highlighting
that, the series in (21) are slowly convergent and an excessive
number of terms is required to acquire the desired accuracy.
Hence, to ease the computer programming, rapidly convergent
solutions are applied [27], [29].

To evaluate the accuracy of our approach, we compare the
dispersion diagram obtained by using the approach of our paper
and the technique discussed in [29]. For a 3-D array of high
dielectric spheres with εr = 20, a = 85 nm and cubical unit
cell of a/d = 0.45, the diagrams in Fig. 17(a) reveal a very
good agreement

Fig. 17(b) displays the dispersion diagram for the array of
dielectric GaP nanospheres with εr = 12.25 and radius of a =
85 nm having the unit cell size of hx = hy = 2.1a and d/a =
2.23. As it is shown, a negative slope backward wave with
relatively large bandwidth is established. This occurs in the
spectrum where the scattering coefficients show the resonance
behavior (Figs. 11 and 12).

Basically, bringing the spheres closer to each other will in-
crease the electric coupling between the spheres where it can
be combined with the magnetic-mode performance of spheres

above their magnetic resonances, offering a hybrid mode with
backward wave phenomenon.

V. SUMMARY

In this paper, theoretical investigation of all dielectric
nanometamaterials is addressed. A FW spherical modal analy-
sis is applied to express the optical fields in terms of the electric
and magnetic dipole modes and the higher order terms. Impos-
ing the boundary conditions at the surface of each nanosphere,
using the translational addition theorem for vector spherical
wave functions, required equations to determine the scattered
coefficients are obtained. We show that if the nanospheres are
small enough or the frequency is such that the magnitude of
higher order modes are negligible compared to dipole modes,
it is enough to model each particle with only dipole spherical
waves.

The concept of electric and magnetic dipole modes genera-
tion for metapatterned structure development is presented. We
demonstrate that by bringing the dielectric spheres close to each
other, the electric coupling between them are increased such that
both electric and magnetic resonances can be achieved around
the same frequency region. After the resonances, the phases
of the scattering coefficients show the negative slope behavior.
Dispersion diagram characteristic for an array of highly coupled
spheres is investigated and the backward wave phenomenon is
achieved.

A capable modeling technique by utilizing RLC circuit the-
ory for characterizing the scattering coefficients is presented.
Following the same analogy, the couplings between spheres are
also described in a type of circuit realization. Computational
results verify the accuracy of circuit models in predicting the
performance of nanostructures.

The success of this study may open new paradigms for high-
performance electric and magnetic dipole mode creations in
optics, using nonmagnetic particles.
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