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Abstract— Green'’s theorems are commonly viewed as integral for Maxwell's equations. As expected, operator symmetry is
identities, but they can also be formulated within a more general associated is associated with reciprocity, and self-adjointness
operator theoretic framework. The radiation integral for fields is associated with lossless systems, although for a given

in terms of a source and Green’s function can be derived in this b d | bl th t d If-adioint
way. We show that Green’s theorem can also be used to obtain ouncary value problem, the symmetry and seli-adjointness

conservation of energy, the uniqueness, reciprocity, and extinction Properties are only formal unless the fields satisfy certain types
theorems, Huygen's principle, and a condition satisfied by fields of boundary conditions. The uniqueness theorem can also be
and sources in a lossless, nonradiating system which parallels optained a way that clarifies the assumption of nonzero loss
the definition of reciprocity. Both three-dimensional and two- ¢4 yniqueness in the time-harmonic Maxwell boundary value
dimensional problems are considered. . . . -
problem and the meaning of uniqueness in the ideal, lossless
case.
|. INTRODUCTION In this paper, the exterior calculus and differential forms

In their usual formulation, Green’s theorems are presentadtation are used. These mathematical methods are the subject
as identities in connection with integrals of products. Withiof many books and papers.{. [2], [3] and the references
the more general setting of functional analysis, Green’s thetberein). We consider time-harmonic fields with“! time
rems can also be viewed as relationships involving the forn@pendence.
adjoint of a partial differential operator [1]. In this paper, we
develop operator theoretic formulations of Green’s theorems
for electromagnetic fields, and use these results to consider
some basic principles and theorems of electromagnetic fieldn this section, we will first present Green’s first and second
theory from a new point of view. theorems theorems for three-dimensional fields as identities.

The operator Green’s theorem has a close relationship witfe will then develop a new formulation of Green’s theorem
the radiation integral and Huygens’ principle, reciprocity, erfor electromagnetic fields from an operator theoretic point of
ergy conservation, lossless conditions, and uniqueness. Mafgw, and apply the result in reconsidering several principles
benefits arise from considering these principles using operagmd theorems of field theory.

Green’s theorems.

The typical application of an operator formulation of
Green’s theorem in partial differential equation theory is i
deriving an integral representation for the solution in terms of Let & and & be one-forms that are continuous together
given sources or forcing functions. We use this procedure wath their first and second derivatives in the volufieand on
recover the usual electromagnetic radiation integral, but withe boundaryS. With Stokes’ theorem we obtain
the interesting twist that the volume integral term is obtained
together with the Huygens principle or surface integral terms / d(& Axd &) = / E1N*dEs. Q)
in a combined expression. This result sheds light on the subtle v s
connection between Huygens’ principle and the extinctionhere « is the Hodge star operator and is the exterior
theorem. product. Expanding the differential form at the left-hand side

We also demonstrate that using operator Green’s theoreinge
reaction and energy integrals can be treated on the same
footing, leading to parallel expressions for energy conservation d(E A*d &) =d & N*xdE — & Ndxd & (2)
3231 reciprocity r_elatlonshlps. Con5|der|n_g the |mpI|c_at|ons &Eelds Green's first vector theorem,

g either an inner product or a reaction integral in form
lating the operator Green’s theorem helps to differentiate the
often-misunderstood symmetry and self-adjointness properties

Il. GREEN'S THEOREMS INTHREE DIMENSIONS

Green’s Theorems as |dentities

/(dgl AxdEy — &1 /\d*dgg):/gl A*xd Ey (3)
14 S



Interchangingg; andé&; yields for 1-forms o and 5. We will also use a multidimensional

integration by parts theorem, which is
/(dgl /\*dEQ_(‘:Q/\d*dgl):/gQ A*d &1 (4)
v s

/doz/\ﬂz/a/\dﬂ—l—]{a/\ﬁ (11)
Subtracting (4) from (3) we obtain Green’s second vector 1% 1% s
theorem, wherea and 3 are again 1-forms. This result can be derived
from the product rule for the exterior derivative and Stokes’
/ (52 Adxd & — &1 Ndxd 52) = /(51 Axd E9 — E9 A *d 81) theorem
\% S ’

5) We now wish to show that the formal adjoint ffis L* =
—*dxd + k*2, by substitutingZ, and L into the left hand

B. Green’s Theorem in Operator Theoretic Setting side of Eq. (9) and showing by computation that a surface

. . : , . integral of the form of the right hand side results. Making the
Basic to the operator viewpoint on Green’s theorem is an, =.. - . .
. ! . .~ Substitutions, we obtain
inner product defined on the space of interest. Accordingly,

we first define an inner product on complex-valued 1-forms % p— [€7 A (—dxd + k2)Es — (—xdwd + K2)EF A 52}
andwv over a finite region/ as s vt !

(12)
{u,v) :/ u* A %V (6) By the identity (10), the terms containing? are equal and
1% opposite in sign. We integrate the remaining two terms by

where the superscript denotes complex conjugation. parts, to obtain
The presence of the complex conjugate is important, for
on complex-valued fields it renders the integral in (6) a true f P= / [xdEF N dEy — dET N xdEs)]
inner product. We will later see that the complex conjugate can /s v
be removed, in which case the integral is no longer an inner +j§ %dEF A Ey + EF NxdE)  (13)
product, but becomes the reaction between a field and current. s

Different forms of the operator theoretic Green’s theorem cathe integrand of the volume term vanishes, also by (10). This
be developed using the two formulations, the former witlaaqds to the desired operator Green’s theorem,
application to conservation of energy and uniqueness, and

the latter to the radiation integral, Huygens’ principle, and (g, r¢,) — (L°&,, &) :7{ %dEF N E; + EF A xdEs] (14)
reciprocity relationships. s

~ From Maxwell's equations and the constitutive relations, {{hich is essentially Green’s second vector theorem (5). Using
is easy to show for a homogeneous, isotropic medium thatFaraday’s Law, and assuming that there are no sources on

LE = joukd @) the boundary integrand can also be written as
where€ is the electric field intensity 1-form7 is the electric P = jwp[Hi A& — &7 NHo] (15)
current density 2-form, and the partial differential operator is
I = —xdxd + k2 @8) C. Conservation of Energy

Th tank | We allow th dium to b bl We now show that a conservation of energy relationship can
€ constank IS w,/ue. We allow the medium 10 be pPossibly e gptained from the operator Green's theorem in Eq. (14). If

(bL: not neciessct‘anly) ,Io?ﬁy, n Whlcg che:jsfcompt)Lexa finiti we consider a lossless medium, for whikhis real, then the
n opeérator Loreens theorem IS derived from the detini IoSperatorL is self-adjoint. In this case, Eq. (14) becomes

of formal operator adjoint with respect to an inner product

over a region of interest: / EENTo+ T NE = ﬁH»{ NE—EFAHy  (16)
\4
(&1, L&) — (L761, &) = fgp(&’&) © it we seté; =& =& and J; = J» = J, then we obtain
where S is the boundary ofl” and the conjunctP(&, &) L X
depends on the operatdr. L is called the formal adjoint Re Vg NI =Re SE nH (47

of L. It may not be the actual adjoint df, becausel and
L® may have different domains and ranges and because
boundary integral term on the right may not be zero. Equatiq
(9) defines the formal adjoint, because a different opera
in place of the correct formal adjoirfi® would not lead to a
pure surface integral term on the right hand side, (@ volume
integral would remain).

We now derive an expression fa?(&1, ;) from the defi-
nition of the operator.. We make use of the identity

més is a statement of the conservation of energy. On the left-
nd side is the real power supplied by the source to the
Id, and on the right is the power flowing out of the volume
across its boundang. This is the real part of Poynting’s
theorem.

For a lossless system with an impenetrable boundary condi-
tion, Green’s theorem also can be used to derive an interesting
expression that parallels the definition of reciprocity. If a sheet
of perfect electric conductor (PEC) is placed along the surface
*a A =aAxS (10) S, or any other type of boundary condition that allows no



power to flow out of the volumé/, then the right-hand side fields, the volume integrals are not inner products, because of

of (14) vanishes, and we have the absence of a complex conjugate on one of the factors of the
. i} integrands. BecauseL€ is a current density, these integrals
/‘/51 N2+ /V JiNE=0 (18) represent reactions.

. . L Proceeding as in the derivation of (15), we obtain
This expression can be taken as a definition of a lossless,

nonradiating system, in the same way that (24) is the definitio E1A*LE — /
of a reciprocal system. Physically, this result means that /g v
system loses no energy if the complex power supplied b i ) (22)
source 1 to field 2 is equal to the complex conjugate of theY making use ofL& = jwpuxJ, the volume integral terms
power supplied by source 2 to field 1. As with the definitioﬁeduce to the standard expression for the reaction between
of reciprocity, &; is excited byJ;, and&, is excited by, f1€lds and sources:

so that the two integrals in (18) do not actually represent the
physical radiation of energy, but must be considered to bef,, ENTe - /V Jin€=-— f{S HinE+ & NHy (23)
measurements by nonperturbing test sources.

LE L N*ES = —jwuj{ HiNE+E1 NHo
S

This is the Lorentz reciprocity theorem.
By definition, a medium is said to be reciprocal if the left-

D. Uniqueness Theorem hand side of (23) vanishes for all pairs of sourcgsand 7,
We can derive the uniqueness theorem for time-harmonjg that

electromagnetic fields from Green’s theorem. Suppose that the
tangential components of a solution p&y H to Maxwell's
equations for a given source are specified ®nSuppose
further that there are two solutions to Maxwell's equationﬁ
inV, & =& and& = £ + €. By the first assumption,
0 =0 on S. From Green’s theorem, we have that

/elAJQ—/jmgQ:o (24)
Vv 1%

We will here reproduce a proof that free space is reciprocal.
S is a sphere with large radius and is in the far field of all
sources, then the fields satisfy alofghe radiation boundary

condition
2Re ENT® +/J*A55:—2Re{j{€/\7{* e dkr
{/V } v g o) E = &(9,9) 1 dra&y =0 (25)
But because of (17), the first term on the left is equal to the H = 1*(dr AE) (26)
right hand side, so we must necessarily have that n

The boundary integral in (23) becomes
/ JT*NE=0 (20)
v

This result provides more insight than the usual proof of the
uniqueness theorem. Because both solutions satisfy Maxwell’s, . . .
equations, the difference field€ must be a homogeneoususmg the identityns5 = x(x( A ), this can be expressed as
solution, such thatL.d€ = 0. Equation (20) requires that e—Jkr
the sourceJ supply no energy to the homogeneous solution nr
0&. Physically, this represents a field solution that can exist ) o )
without a driving source, or in other words, a nonradiatinEXPa”d'”g the interior product across the exterior product
resonant mode with infinite quality factor. If the source werdSing aa(8 A y) = (asf) Ay + (~1)%993 A (ary) leads
to supply energy to such a mode, its amplitude would groW
without bound, and the steady state assumption we have made-—
in modeling the fields as time-harmonic would be violated. j{ * [(Eozadr) A Egr — dr A (Eg2€01)
Mathematically, the time-harmonic Maxwell boundary value S
problem for a lossless system actually does not have a unique —(Epradr) A Egz + dr A (Eo12E02)]  (29)

solution, because there may exist undamped transient Sofg first and third terms of the integrand vanish because of the

tions. The usual way to deal with this difficulty in provingshogonality condition in (25). The second and fourth terms

the uniqueness theorem is to postulate a very small loss that equal and opposite in sign. As a result, the integrand is

eliminates any nonradiating, resonant modes of the systeMgentically zero onS, and we have that free space is reciprocal
according to (24). This proof can easily be generalized to the

E. Lorentz Reciprocity Theorem case of an anisotropic medium, for which reciprocity holds as

We can derive a slightly different Green’s theorem usingng asx, = *, andx. = %, in the notation of [4].
reaction instead of the inner product (6). We begin with

/ & A*LE, _/ LTE N +Ey = f Q(&1,E) 1) F. Green’s Forms and the Radiation Integral
v v s We finally turn to the most common application of a Green’s
where the operatof.” is the formal transpose af. For an theorem in the theory of boundary value problems. This is the
isotropic medium, we have thdt= L7, For complex phasor derivation of an integral solution or radiation integral for a

—jkr
e % Eoa N *(dT N 501) — &1 N *(d?" A\ 502) (27)
noJs

ji* [gogJ(dT A\ 501) — golJ(dT AN 502)] (28)




boundary value problem. The transposed doubfe 1 tensor I1l. GREEN'S THEOREMS INTWO DIMENSIONS

Green's function satisfies [3] We now turn to the case of two-dimensional problems,

which arise if the properties of transverse modes in elec-
tromagnetic structures exhibiting cylindrical symmetry are

. . , , , investigated. For the analysis of two-dimmensional structures
whereZ is the unit double 1 1 formdx da’+dy dy' +dz dz'. the scalar Green’s theorems in two dimensions are useful. As

The derivative operator acts on the unprimed coordinatie , )
; , . before, we first formulate the Green’s theorems as usually
define here the formal transpose of the Green'’s function, rather

than the Green’s function satisfyingG(r,r’) — d(r — r')Z, constituted, and then turn to the operator theoretic setting.

because for a general medium the radiation integral is given
in terms of the formal transposg’ rather thanG [4]. For A. Green's Theorems as Identities - 2D

an isotropic mediumg” = g, so that there is no distinction  There are two approaches to formulating the 2D Green’s
between the Green form and its formal transpose. In this papg@korems. One is to use exterior calculus for a 2D space.

LTGT (r,x') =6(r — /)T (30)

we assume that the medium is isotropic. This has the advantage that the algebra of differential forms is
By making the substitutions; (r) = G(r,r’) and B2 = £ almost completely unchanged in a formal sense, so that nearly
in (22), we obtain the radiation integral all results appear exactly as they do in a 3D space, but with
different degrees for the differential forms and, consequently,
g(r') = —jwu/ G(r,r') A T (r) different actions of the operators on the differential forms.
v There is, however, a serious disadvantage to the use of the

2D exterior calculus in this way. The 2D calculus can lead to
confusion if used side by side in the same document with
the 3D formulation, without great care to point out which
where the integrations are over theoordinate. Using either expressions are to be interpreted as 2D and which as 3D (the
shift invarianceG(r’,r) = G(|r — r'[) or more generally the major problem being the Hodge star operator). For this reason,
symmetry properties ofj(r’,r), the coordinate dependenceye formulate the 2D version of the Green’s theorem here using
of G(r',r) can be interchanged and placed in the usu@e 3D exterior calculus.
convention for the radiation integral. Consider a structure with general cylindric symmetry. In a
This expression is of note because the volume integral teartesian coordinate systemy, = let the z-axis be the axis
appears together with a surface integration, which is the mafif-the cylindric structure and let and = be the transverse co-
ematical expression of Huygens’ principle. It is interestingrdinates. The cylindric structure under investigation exhibits

to consider the consequences of this rigorous combinationtgfnslational invariance in the direction. We introduce the
the two terms. If the field€ and H on the boundarys are transverse exterior derivative

produced by impressed sources inside the region of interest ou ou

V', then the field solutiorf is given entirely by the volume diUd =de— +dy— (32)
. . . Or dy

integral in (31). As a consequence, the surface integral must o

vanish. This is the extinction theorem. Alternately, if the fieldsor a two-formi/ exhibiting only transverse components,
are produced by sources entirely outsidé’/othen the volume _

term vanishes, because its integrand is zero over the domain Ur,y) = Us(w, y)dy A dz + Uy (2, y)dz A do (33)
of integration. In this case, the surface integral term becomgg Stokes’ theorem becomes

nonzero. This is Huygen'’s principle.
fu=[ au
S 14

+ 7{ *xdG(r,r') AN E(r) — jwpG(r,r') A H(r) (31)
s

The surface integral in (31) has properties that are both (34)
interesting and subtle, but which can be better understood ) o

when viewed in conjunction with the volume term. Thdn component notation this is

subtlety arises in that the integrands of the surface integral

term in the two cases mentioned above can be made to be f. (Us(2,y)dy — Uy(z,y)dz) Adz (35)
almost |d9nt|cal, yet in one case the integral vamshes,“and in y(z,y)  OUu(z,y)

the other it is nonzero. To consider a concrete examplé, igf = / ( oz P

a spherical ball containing a point source, then the surface term v Y
vanishes. IfV’ is the exterior of the ball, then the volume ternSince the integrands in both sides of the equation do not
is zero and the surface term gives the fields radiated by tepend on: we can omit the integration over, so that

) dz Ady Adz (36)

point source outside the ball. In the two cases, the integrands
are nearly identical, yet in one case the result of the integral }{ (Us(2,y)dy — Uy(z,y)dz) (37)
vanishes, and the other case it is nonzero. The only differences
: : ) U (x,y)  OUg(x,y)
between the two surface integrations are that one casethe = 3 + 9 dx A dy (38)
A T Y

boundary of a sphere, and in the otlteis the boundary of all
space except the sphere, so that the orientations for the surf@ce the right-hand side of this equation the integration is
normal direction forS are different, and the field observatiorperformed over a cross-sectional ardaof the cylindrical

points are in different regions. structure and the integral on the left-hand side of the equation



is performed over the boundary cur¢é of the aread. We B. Green’s Theorem in Operator Theoretic Setting - 2D

can write this two-dimensional Stokes’ theorem as We now turn finally to the development of Green’s theorem

7{ U.dz = / (d; U)dz (39) as a statement of a formal operator adjoint condition. In this
c A case, the appropriate inner product is
Let ¢(x,y) andy(z,y) be two-dimensional scalar functions

continuous together with their first and second derivatives in (1, ¢) = / (*xp)dz (49)
the aread and on the boundarg'. With the two-dimensional A
Stokes’ theorem (39) we obtain The scalar fields are assumed to satisfy a Helmholtz equation

of the form

[ dwdiodz = f (odioodz (40
A C

Allowing the scalar) to pass through the Hodge star operator )
by linearity in the integrand on the left-hand side allows th&hereA; = «d;xd; on O-forms, so that the scalar field could

product rule for the exterior derivative to be used, to obtainf€Present, for example, the component of the electric or
magnetic fields.

di (¥ Axdyd) = (deth) A*did + ¥ A dyxdy @) (41)  The formal operator adjoink® satisfies

Inserting this result into (40) leads to the two-dimensional
form of Green’s first scalar theorem, (1, M) — (M, ¢) = jé R(y, ¢) (51)
c

/A (dyp A *dpp)adz + /A (¢ dpxdep) odz = / (*(¥d9))odz  \which has the same form as (9) for the 3D case. The formal
(42) adjoint M* with respect to the inner product (49) is simply

Let us choose a coordinate systemm, z such that: andn are the complex conjugate af/. Substituting expressions fde/

the transverse coordinates ani the longitudinal coordinate. and M¢ into Eq. (51) and cancelling the terms containirg

furthermoreu is tangential andh is normal to the boundary yields

curve C. This yields

M= (A +k)p=f (50)

99 gn 99 gu (, Mg) — (MY, ) = / (Y dexdid — pdixdyy™) udz
= _— — e 4
(*(pderp))adz wau 7 dn wan " du (43) A (52)
Inserting this into (42) and using Using Eq. (46) leads to the desired form of Green’s theorem,

dixdip = %A = A gugndu Adn A dz (44)

whereg, andg, are metrical coefficients associated with the

u,n coordinates, yields an alternative two-dimensional formhis expression can be applied in the same way for 2D
of Green’s first scalar theorem, problems as the corresponding result (14) for 3D fields.

99 0 gn | 99 O gu
/A <8u ou gy * on On gn> dundn

(6, M) — (MO, $) = ﬁ (67 ded) — (™) odz (53)

C. Radiation Integral - 2D

9 gu
+/A¢A¢gugndu/\dn = —fciﬂ%;du (45)  For completeness, we develop the integral solution for a

| hanai du in (42 d formi he diff two-dimensional boundary value problem consisting of the
hterchangingp and+) in (42) and forming the difference partial differential equation (50) and a prescribed value for the

betwe(_en both equations, (_:on5|der|ng thgt A *,d¢ = do N sealar field on the boundary cur¢é The Green'’s function for
*d1, yields the two-dimensional form of Green’s second scalﬁ{is boundary value problem satisfies the definition
theorem

/ (4 dpxds — §dpxdys) sz = f [(9ds ) — *(bdh) oz
A C

(46) on the regionA as well as the given boundary condition 6n
Inserting (43) yields an alternative two-dimensional form ofye now make the substitution(r) = ¢%(r,r’) in Eq. (53),

Mg(r,v') =6(r —1') (54)

Green’s second scalar theorem, where g¢ is defined analogously to (54) but with the adjoint
operatorM® = M*, so thatg® = g*. This procedure leads to

/ (6 dpxdsp — 6 dyxdyip)adz = 74 (W’ - a‘b) Gu gy P g =9 TeP

A C an 8n gn(47) ,
With (44) we obtain from this ¢(r) = ./A lg(r, ¥)xf ()] dz

() Avp— Ayth) gugndundn = 00 _ 99 Gug, / N o(r N o(r.x!
| 0 806—0 A)gugndundn = § (950 —vg0) " ~ § Mo a)d0() — (ol )dig(r, )]z (55)
(48)

The alternate forms of the theorems are useful in that thaefter interchanging: and r’. Again, the dependence on the
show explicitly the dependence of the boundary integratiovormal derivatives ofy and g can be made explicit using Eq.
on both the scalars and their normal derivatives. (48).



IV. CONCLUSION

We have considered Green's theorem from two points of
view: as integral identities for derivatives of fields, and as
statements of formal operator transpose and adjoint relation-
ships. It is hoped that this treatment will help to emphasize
the importance of Green’s theorems in electromagnetic field
theory, and shed some interesting new light on the radiation
integral, Huygens principle, reciprocity, energy conservation,
uniqueness, and other principles of electromagnetic field the-
ory.
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