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Abstract— Green’s theorems are commonly viewed as integral
identities, but they can also be formulated within a more general
operator theoretic framework. The radiation integral for fields
in terms of a source and Green’s function can be derived in this
way. We show that Green’s theorem can also be used to obtain
conservation of energy, the uniqueness, reciprocity, and extinction
theorems, Huygen’s principle, and a condition satisfied by fields
and sources in a lossless, nonradiating system which parallels
the definition of reciprocity. Both three-dimensional and two-
dimensional problems are considered.

I. I NTRODUCTION

In their usual formulation, Green’s theorems are presented
as identities in connection with integrals of products. Within
the more general setting of functional analysis, Green’s theo-
rems can also be viewed as relationships involving the formal
adjoint of a partial differential operator [1]. In this paper, we
develop operator theoretic formulations of Green’s theorems
for electromagnetic fields, and use these results to consider
some basic principles and theorems of electromagnetic field
theory from a new point of view.

The operator Green’s theorem has a close relationship with
the radiation integral and Huygens’ principle, reciprocity, en-
ergy conservation, lossless conditions, and uniqueness. Many
benefits arise from considering these principles using operator
Green’s theorems.

The typical application of an operator formulation of
Green’s theorem in partial differential equation theory is in
deriving an integral representation for the solution in terms of
given sources or forcing functions. We use this procedure to
recover the usual electromagnetic radiation integral, but with
the interesting twist that the volume integral term is obtained
together with the Huygens principle or surface integral terms
in a combined expression. This result sheds light on the subtle
connection between Huygens’ principle and the extinction
theorem.

We also demonstrate that using operator Green’s theorems,
reaction and energy integrals can be treated on the same
footing, leading to parallel expressions for energy conservation
and reciprocity relationships. Considering the implications of
using either an inner product or a reaction integral in formu-
lating the operator Green’s theorem helps to differentiate the
often-misunderstood symmetry and self-adjointness properties

for Maxwell’s equations. As expected, operator symmetry is
associated is associated with reciprocity, and self-adjointness
is associated with lossless systems, although for a given
boundary value problem, the symmetry and self-adjointness
properties are only formal unless the fields satisfy certain types
of boundary conditions. The uniqueness theorem can also be
obtained a way that clarifies the assumption of nonzero loss
for uniqueness in the time-harmonic Maxwell boundary value
problem and the meaning of uniqueness in the ideal, lossless
case.

In this paper, the exterior calculus and differential forms
notation are used. These mathematical methods are the subject
of many books and papers (c.f. [2], [3] and the references
therein). We consider time-harmonic fields withejωt time
dependence.

II. GREEN’ S THEOREMS INTHREE DIMENSIONS

In this section, we will first present Green’s first and second
theorems theorems for three-dimensional fields as identities.
We will then develop a new formulation of Green’s theorem
for electromagnetic fields from an operator theoretic point of
view, and apply the result in reconsidering several principles
and theorems of field theory.

A. Green’s Theorems as Identities

Let E1 and E2 be one-forms that are continuous together
with their first and second derivatives in the volumeV and on
the boundaryS. With Stokes’ theorem we obtain

∫

V

d(E1 ∧ ?d E2) =
∫

S

E1 ∧ ?d E2 . (1)

where ? is the Hodge star operator and∧ is the exterior
product. Expanding the differential form at the left-hand side
into

d (E1 ∧ ?d E2) = d E1 ∧ ?d E2 − E1 ∧ d?d E2 (2)

yields Green’s first vector theorem,
∫

V

(d E1 ∧ ?d E2 − E1 ∧ d?d E2) =
∫

S

E1 ∧ ?d E2 (3)
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InterchangingE1 andE2 yields
∫

V

(d E1 ∧ ?d E2 − E2 ∧ d?d E1) =
∫

S

E2 ∧ ?d E1 (4)

Subtracting (4) from (3) we obtain Green’s second vector
theorem,∫

V

(E2 ∧d?d E1−E1 ∧d?d E2) =
∫

S

(E1 ∧ ?d E2−E2 ∧ ?d E1)

(5)

B. Green’s Theorem in Operator Theoretic Setting

Basic to the operator viewpoint on Green’s theorem is an
inner product defined on the space of interest. Accordingly,
we first define an inner product on complex-valued 1-formsu
andv over a finite regionV as

〈u, v〉 =
∫

V

u∗ ∧ ?v (6)

where the superscript∗ denotes complex conjugation.
The presence of the complex conjugate is important, for

on complex-valued fields it renders the integral in (6) a true
inner product. We will later see that the complex conjugate can
be removed, in which case the integral is no longer an inner
product, but becomes the reaction between a field and current.
Different forms of the operator theoretic Green’s theorem can
be developed using the two formulations, the former with
application to conservation of energy and uniqueness, and
the latter to the radiation integral, Huygens’ principle, and
reciprocity relationships.

From Maxwell’s equations and the constitutive relations, it
is easy to show for a homogeneous, isotropic medium that

LE = jωµ?J (7)

whereE is the electric field intensity 1-form,J is the electric
current density 2-form, and the partial differential operator is

L = −?d?d + k2 (8)

The constantk is ω
√

µε. We allow the medium to be possibly
(but not necessarily) lossy, in which casek is complex.

An operator Green’s theorem is derived from the definition
of formal operator adjoint with respect to an inner product
over a region of interest:

〈E1, LE2〉 − 〈LaE1, E2〉 =
∮

S

P (E1, E2) (9)

where S is the boundary ofV and the conjunctP (E1, E2)
depends on the operatorL. La is called the formal adjoint
of L. It may not be the actual adjoint ofL, becauseL and
La may have different domains and ranges and because the
boundary integral term on the right may not be zero. Equation
(9) defines the formal adjoint, because a different operator
in place of the correct formal adjointLa would not lead to a
pure surface integral term on the right hand side (i.e., a volume
integral would remain).

We now derive an expression forP (E1, E2) from the defi-
nition of the operatorL. We make use of the identity

?α ∧ β = α ∧ ?β (10)

for 1-forms α and β. We will also use a multidimensional
integration by parts theorem, which is

∫

V

dα ∧ β =
∫

V

α ∧ dβ +
∮

S

α ∧ β (11)

whereα andβ are again 1-forms. This result can be derived
from the product rule for the exterior derivative and Stokes’
theorem.

We now wish to show that the formal adjoint ofL is La =
−?d?d + k∗2, by substitutingL and La into the left hand
side of Eq. (9) and showing by computation that a surface
integral of the form of the right hand side results. Making the
substitutions, we obtain
∮

S

P =
∫

V

[E∗1 ∧ (−?d?d + k2)E2 − (−?d?d + k2)E∗1 ∧ E2
]

(12)
By the identity (10), the terms containingk2 are equal and
opposite in sign. We integrate the remaining two terms by
parts, to obtain

∮

S

P =
∫

V

[?dE∗1 ∧ dE2 − dE∗1 ∧ ?dE2]

+
∮

S

[?dE∗1 ∧ E2 + E∗1 ∧ ?dE2] (13)

The integrand of the volume term vanishes, also by (10). This
leads to the desired operator Green’s theorem,

〈E1, LE2〉 − 〈LaE1, E2〉 =
∮

S

[?dE∗1 ∧ E2 + E∗1 ∧ ?dE2] (14)

which is essentially Green’s second vector theorem (5). Using
Faraday’s Law, and assuming that there are no sources onS,
the boundary integrand can also be written as

P = jωµ [H∗1 ∧ E2 − E∗1 ∧H2] (15)

C. Conservation of Energy

We now show that a conservation of energy relationship can
be obtained from the operator Green’s theorem in Eq. (14). If
we consider a lossless medium, for whichk is real, then the
operatorL is self-adjoint. In this case, Eq. (14) becomes

∫

V

E∗1 ∧ J2 + J ∗1 ∧ E2 =
∮

S

H∗1 ∧ E2 − E∗1 ∧H2 (16)

If we setE1 = E2 = E andJ1 = J2 = J , then we obtain

Re

{∫

V

E ∧ J ∗
}

= −Re

{∮

S

E ∧ H∗
}

(17)

This is a statement of the conservation of energy. On the left-
hand side is the real power supplied by the source to the
field, and on the right is the power flowing out of the volume
V across its boundaryS. This is the real part of Poynting’s
theorem.

For a lossless system with an impenetrable boundary condi-
tion, Green’s theorem also can be used to derive an interesting
expression that parallels the definition of reciprocity. If a sheet
of perfect electric conductor (PEC) is placed along the surface
S, or any other type of boundary condition that allows no
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power to flow out of the volumeV , then the right-hand side
of (14) vanishes, and we have∫

V

E∗1 ∧ J2 +
∫

V

J ∗1 ∧ E2 = 0 (18)

This expression can be taken as a definition of a lossless,
nonradiating system, in the same way that (24) is the definition
of a reciprocal system. Physically, this result means that a
system loses no energy if the complex power supplied by
source 1 to field 2 is equal to the complex conjugate of the
power supplied by source 2 to field 1. As with the definition
of reciprocity,E1 is excited byJ1, andE2 is excited byJ2,
so that the two integrals in (18) do not actually represent the
physical radiation of energy, but must be considered to be
measurements by nonperturbing test sources.

D. Uniqueness Theorem

We can derive the uniqueness theorem for time-harmonic
electromagnetic fields from Green’s theorem. Suppose that the
tangential components of a solution pairE , H to Maxwell’s
equations for a given source are specified onS. Suppose
further that there are two solutions to Maxwell’s equations
in V , E1 = E and E2 = E + δE . By the first assumption,
δE = 0 on S. From Green’s theorem, we have that

2Re

{∫

V

E ∧ J ∗
}

+
∫

V

J ∗ ∧ δE = −2Re

{∮

S

E ∧ H∗
}

(19)
But because of (17), the first term on the left is equal to the
right hand side, so we must necessarily have that∫

V

J ∗ ∧ δE = 0 (20)

This result provides more insight than the usual proof of the
uniqueness theorem. Because both solutions satisfy Maxwell’s
equations, the difference fieldδE must be a homogeneous
solution, such thatLδE = 0. Equation (20) requires that
the sourceJ supply no energy to the homogeneous solution
δE . Physically, this represents a field solution that can exist
without a driving source, or in other words, a nonradiating
resonant mode with infinite quality factor. If the source were
to supply energy to such a mode, its amplitude would grow
without bound, and the steady state assumption we have made
in modeling the fields as time-harmonic would be violated.

Mathematically, the time-harmonic Maxwell boundary value
problem for a lossless system actually does not have a unique
solution, because there may exist undamped transient solu-
tions. The usual way to deal with this difficulty in proving
the uniqueness theorem is to postulate a very small loss that
eliminates any nonradiating, resonant modes of the system.

E. Lorentz Reciprocity Theorem

We can derive a slightly different Green’s theorem using
reaction instead of the inner product (6). We begin with∫

V

E1 ∧ ?LE2 −
∫

V

LTE1 ∧ ?E2 =
∮

S

Q(E1, E2) (21)

where the operatorLT is the formal transpose ofL. For an
isotropic medium, we have thatL = LT . For complex phasor

fields, the volume integrals are not inner products, because of
the absence of a complex conjugate on one of the factors of the
integrands. Because?LE is a current density, these integrals
represent reactions.

Proceeding as in the derivation of (15), we obtain
∫

V

E1 ∧ ?LE2−
∫

V

LE1 ∧ ?E2 = −jωµ

∮

S

H1 ∧E2 + E1 ∧H2

(22)
By making use ofLE = jωµ?J , the volume integral terms
reduce to the standard expression for the reaction between
fields and sources:∫

V

E1 ∧ J2 −
∫

V

J1 ∧ E2 = −
∮

S

H1 ∧ E2 + E1 ∧H2 (23)

This is the Lorentz reciprocity theorem.
By definition, a medium is said to be reciprocal if the left-

hand side of (23) vanishes for all pairs of sourcesJ1 andJ2,
so that ∫

V

E1 ∧ J2 −
∫

V

J1 ∧ E2 = 0 (24)

We will here reproduce a proof that free space is reciprocal.
If S is a sphere with large radius and is in the far field of all
sources, then the fields satisfy alongS the radiation boundary
condition

E = E0(θ, φ)
e−jkr

4
, dryE0 = 0 (25)

H =
1
η
?(dr ∧ E) (26)

The boundary integral in (23) becomes

−e−jkr

ηr

∮

S

E02 ∧ ?(dr ∧ E01)− E01 ∧ ?(dr ∧ E02) (27)

Using the identityαyβ = ?(?β ∧α), this can be expressed as

e−jkr

ηr

∮

S

? [E02y(dr ∧ E01)− E01y(dr ∧ E02)] (28)

Expanding the interior product across the exterior product
using αy(β ∧ γ) = (αyβ) ∧ γ + (−1)degββ ∧ (αyγ) leads
to

e−jkr

ηr

∮

S

? [(E02ydr) ∧ E01 − dr ∧ (E02yE01)

−(E01ydr) ∧ E02 + dr ∧ (E01yE02)] (29)

The first and third terms of the integrand vanish because of the
orthogonality condition in (25). The second and fourth terms
are equal and opposite in sign. As a result, the integrand is
identically zero onS, and we have that free space is reciprocal
according to (24). This proof can easily be generalized to the
case of an anisotropic medium, for which reciprocity holds as
long as?h = ?̃h and?e = ?̃e in the notation of [4].

F. Green’s Forms and the Radiation Integral

We finally turn to the most common application of a Green’s
theorem in the theory of boundary value problems. This is the
derivation of an integral solution or radiation integral for a
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boundary value problem. The transposed double 1⊗ 1 tensor
Green’s function satisfies [5]

LTGT (r, r′) = δ(r− r′)I (30)

whereI is the unit double 1⊗ 1 formdx dx′+dy dy′+dz dz′.
The derivative operator acts on the unprimed coordinater. We
define here the formal transpose of the Green’s function, rather
than the Green’s function satisfyingLG(r, r′) = δ(r − r′)I,
because for a general medium the radiation integral is given
in terms of the formal transposeGT rather thanG [4]. For
an isotropic medium,GT = G, so that there is no distinction
between the Green form and its formal transpose. In this paper,
we assume that the medium is isotropic.

By making the substitutionsE1(r) = G(r, r′) andE2 = E
in (22), we obtain the radiation integral

E(r′) = −jωµ

∫

V

G(r, r′) ∧ J (r)

+
∮

S

?dG(r, r′) ∧ E(r)− jωµG(r, r′) ∧H(r) (31)

where the integrations are over ther coordinate. Using either
shift invarianceG(r′, r) = G(|r − r′|) or more generally the
symmetry properties ofG(r′, r), the coordinate dependence
of G(r′, r) can be interchanged and placed in the usual
convention for the radiation integral.

This expression is of note because the volume integral term
appears together with a surface integration, which is the math-
ematical expression of Huygens’ principle. It is interesting
to consider the consequences of this rigorous combination of
the two terms. If the fieldsE andH on the boundaryS are
produced by impressed sources inside the region of interest
V , then the field solutionE is given entirely by the volume
integral in (31). As a consequence, the surface integral must
vanish. This is the extinction theorem. Alternately, if the fields
are produced by sources entirely outside ofV , then the volume
term vanishes, because its integrand is zero over the domain
of integration. In this case, the surface integral term becomes
nonzero. This is Huygen’s principle.

The surface integral in (31) has properties that are both
interesting and subtle, but which can be better understood
when viewed in conjunction with the volume term. The
subtlety arises in that the integrands of the surface integral
term in the two cases mentioned above can be made to be
almost identical, yet in one case the integral vanishes, and in
the other it is nonzero. To consider a concrete example, ifV is
a spherical ball containing a point source, then the surface term
vanishes. IfV is the exterior of the ball, then the volume term
is zero and the surface term gives the fields radiated by the
point source outside the ball. In the two cases, the integrands
are nearly identical, yet in one case the result of the integral
vanishes, and the other case it is nonzero. The only differences
between the two surface integrations are that one case,S is the
boundary of a sphere, and in the otherS is the boundary of all
space except the sphere, so that the orientations for the surface
normal direction forS are different, and the field observation
points are in different regions.

III. G REEN’ S THEOREMS INTWO DIMENSIONS

We now turn to the case of two-dimensional problems,
which arise if the properties of transverse modes in elec-
tromagnetic structures exhibiting cylindrical symmetry are
investigated. For the analysis of two-dimmensional structures
the scalar Green’s theorems in two dimensions are useful. As
before, we first formulate the Green’s theorems as usually
constituted, and then turn to the operator theoretic setting.

A. Green’s Theorems as Identities - 2D

There are two approaches to formulating the 2D Green’s
theorems. One is to use exterior calculus for a 2D space.
This has the advantage that the algebra of differential forms is
almost completely unchanged in a formal sense, so that nearly
all results appear exactly as they do in a 3D space, but with
different degrees for the differential forms and, consequently,
different actions of the operators on the differential forms.
There is, however, a serious disadvantage to the use of the
2D exterior calculus in this way. The 2D calculus can lead to
confusion if used side by side in the same document with
the 3D formulation, without great care to point out which
expressions are to be interpreted as 2D and which as 3D (the
major problem being the Hodge star operator). For this reason,
we formulate the 2D version of the Green’s theorem here using
the 3D exterior calculus.

Consider a structure with general cylindric symmetry. In a
Cartesian coordinate systemx, y, z let the z-axis be the axis
of the cylindric structure and lety andz be the transverse co-
ordinates. The cylindric structure under investigation exhibits
translational invariance in thez direction. We introduce the
transverse exterior derivative

dt U = dx
∂U
∂x

+ dy
∂U
∂y

(32)

For a two-formU exhibiting only transverse components,

U(x, y) = Ux(x, y)dy ∧ dz + Uy(x, y)dz ∧ dx (33)

the Stokes’ theorem becomes∮

S

U =
∫

V

dt U (34)

In component notation this is
∮

S

(Ux(x, y)dy − Uy(x, y)dx) ∧ dz (35)

=
∫

V

(
∂Ux(x, y)

∂x
+

∂Ux(x, y)
∂y

)
dx ∧ dy ∧ dz (36)

Since the integrands in both sides of the equation do not
depend onz we can omit the integration overz, so that

∮

C

(Ux(x, y)dy − Uy(x, y)dx) (37)

=
∫

A

(
∂Ux(x, y)

∂x
+

∂Ux(x, y)
∂y

)
dx ∧ dy (38)

On the right-hand side of this equation the integration is
performed over a cross-sectional areaA of the cylindrical
structure and the integral on the left-hand side of the equation
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is performed over the boundary curveC of the areaA. We
can write this two-dimensional Stokes’ theorem as∮

C

Uydz =
∫

A

(dt U)ydz (39)

Let φ(x, y) and ψ(x, y) be two-dimensional scalar functions
continuous together with their first and second derivatives in
the areaA and on the boundaryC. With the two-dimensional
Stokes’ theorem (39) we obtain∫

A

dt(?(ψdtφ))ydz =
∮

C

(?(ψdtφ))ydz (40)

Allowing the scalarψ to pass through the Hodge star operator
by linearity in the integrand on the left-hand side allows the
product rule for the exterior derivative to be used, to obtain

dt(ψ ∧ ?dtφ) = (dtψ) ∧ ?dtφ + ψ ∧ dt?dtφ) (41)

Inserting this result into (40) leads to the two-dimensional
form of Green’s first scalar theorem,∫

A

(dtψ ∧ ?dtφ)ydz +
∫

A

(ψ dt?dtφ)ydz =
∫

C

(?(ψdφ))ydz

(42)
Let us choose a coordinate systemu, n, z such thatu andn are
the transverse coordinates andz is the longitudinal coordinate.
furthermoreu is tangential andn is normal to the boundary
curveC. This yields

(?(φdtψ))ydz = ψ
∂φ

∂u

gn

gu
dn− ψ

∂φ

∂n

gu

gn
du (43)

Inserting this into (42) and using

dt?dtφ = ?∆tφ = ∆φ gugndu ∧ dn ∧ dz (44)

wheregu andgn are metrical coefficients associated with the
u, n coordinates, yields an alternative two-dimensional form
of Green’s first scalar theorem,

∫

A

(
∂φ

∂u

∂ψ

∂u

gn

gu
+

∂φ

∂n

∂ψ

∂n

gu

gn

)
du ∧ dn

+
∫

A

ψ ∆φ gugndu ∧ dn = −
∮

C

ψ
∂φ

∂n

gu

gn
du (45)

Interchangingφ and ψ in (42) and forming the difference
between both equations, considering thatdψ ∧ ?dφ = dφ ∧
?dψ, yields the two-dimensional form of Green’s second scalar
theorem∫

A

(ψ dt?dtφ− φdt?dtψ)ydz =
∮

C

[?(ψdtφ)− ?(φdtψ)]ydz

(46)
Inserting (43) yields an alternative two-dimensional form of
Green’s second scalar theorem,∫

A

(ψ dt?dtφ− φdt?dtψ)ydz =
∮

C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
gu

gn
du

(47)
With (44) we obtain from this∫

A

(ψ ∆tφ−φ ∆tψ)gugndu∧dn =
∮

C

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
gu

gn
du

(48)
The alternate forms of the theorems are useful in that they
show explicitly the dependence of the boundary integration
on both the scalars and their normal derivatives.

B. Green’s Theorem in Operator Theoretic Setting - 2D

We now turn finally to the development of Green’s theorem
as a statement of a formal operator adjoint condition. In this
case, the appropriate inner product is

〈ψ, φ〉 =
∫

A

(ψ∗?φ)ydz (49)

The scalar fields are assumed to satisfy a Helmholtz equation
of the form

Mφ = (∆t + k2)φ = f (50)

where∆t = ?dt?dt on 0-forms, so that the scalar field could
represent, for example, thez component of the electric or
magnetic fields.

The formal operator adjointLa satisfies

〈ψ, Mφ〉 − 〈Maψ, φ〉 =
∮

C

R(ψ, φ) (51)

which has the same form as (9) for the 3D case. The formal
adjoint Ma with respect to the inner product (49) is simply
the complex conjugate ofM . Substituting expressions forM
andMa into Eq. (51) and cancelling the terms containingk2

yields

〈ψ,Mφ〉 − 〈Maψ, φ〉 =
∫

A

(ψ∗dt?dtφ− φdt?dtψ
∗) ydz

(52)
Using Eq. (46) leads to the desired form of Green’s theorem,

〈ψ, Mφ〉 − 〈Maψ, φ〉 =
∮

C

[?(ψ∗dtφ)− ?(φdtψ
∗)]ydz (53)

This expression can be applied in the same way for 2D
problems as the corresponding result (14) for 3D fields.

C. Radiation Integral - 2D

For completeness, we develop the integral solution for a
two-dimensional boundary value problem consisting of the
partial differential equation (50) and a prescribed value for the
scalar field on the boundary curveC. The Green’s function for
this boundary value problem satisfies the definition

Mg(r, r′) = δ(r− r′) (54)

on the regionA as well as the given boundary condition onC.
We now make the substitutionψ(r) = ga(r, r′) in Eq. (53),
wherega is defined analogously to (54) but with the adjoint
operatorMa = M∗, so thatga = g∗. This procedure leads to

φ(r) =
∫ ′

A

[g(r, r′)?f(r′)]ydz

−
∮ ′

C

[?(g(r, r′)d′tφ(r′)− ?(φ(r′)d′tg(r, r′))]ydz (55)

after interchangingr and r′. Again, the dependence on the
normal derivatives ofφ andg can be made explicit using Eq.
(48).
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IV. CONCLUSION

We have considered Green’s theorem from two points of
view: as integral identities for derivatives of fields, and as
statements of formal operator transpose and adjoint relation-
ships. It is hoped that this treatment will help to emphasize
the importance of Green’s theorems in electromagnetic field
theory, and shed some interesting new light on the radiation
integral, Huygens principle, reciprocity, energy conservation,
uniqueness, and other principles of electromagnetic field the-
ory.
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