ECEn 560 Electromagnetic Wave Theory

Homework #13

Due Mar. 1, 2016 (may be turned in late for half credit)

1. Find an approximate value for the integral

$$\int_0^\pi \sin^3(\phi) \, e^{i \, 20 \sin(\phi)}$$

using the method of stationary phase. How close is your approximation to the exact value? How could you get a more accurate approximation?

The integral can be evaluated exactly using Mathematica or another symbolic math package. Or, you can use numerical integration with Matlab:

a = 0; b = pi; N = 1000; dx = pi/N; x = (a + dx/2):dx:(b - dx/2); I = sum(sin(x).^3.*exp(i*20*sin(x)))*dx

2. Derive Stirling's formula $n! \simeq (2\pi)^{1/2} n^{n+1/2} e^{-n}$ from the integral definition

$$n! = \int_0^\infty x^n e^{-x} \, dx$$

Hint: combine the exponents using the \ln function before finding the critical point. Also, it's helpful to graph the integrand and understand how it depends on n.

3. The Bessel function can be expressed as the integral

$$J_n(\rho) = \operatorname{Re}\left\{\frac{1}{\pi}\int_0^{\pi} e^{i\rho\sin x} e^{-inx} \, dx\right\}$$

Use the method of stationary phase to derive the asymptotic approximation

$$J_n(\rho) \simeq \sqrt{\frac{2}{\pi\rho}} \cos(\rho - n\pi/2 - \pi/4)$$