ECEn 560 Electromagnetic Wave Theory

Homework #1

Due January 12, 2016 at the beginning of class (may be turned in late for half credit)

- 1. Compute the curl and divergence of the following vector fields:
 - (a) $x^2 \hat{y} + y^2 \hat{x}$ (b) $\rho \hat{\phi}$
- 2. Check the following identities for $\phi = x^2 + y^2$ and $\overline{A} = x^2 y^2 \hat{x}$:
 - (a) $\nabla \times (\nabla \phi) = 0$
 - (b) $\nabla \cdot (\nabla \times \overline{A}) = 0$
 - (c) $\nabla^2 \overline{A} = -\nabla \times (\nabla \times \overline{A}) + \nabla (\nabla \cdot \overline{A})$
- 3. For the vector $\overline{A} = \hat{\rho}\rho^2 + \hat{z}2z$, verify the divergence theorem for the cylindrical region enclosed by $\rho = 5, z = 0, z = 3$.
- 4. Write down (a) the electric field intensity vector and (b) the magnetic field intensity vector in phasor form for a plane wave with frequency 2.4 GHz, propagating in the x̂ + ŷ direction, linearly polarized in the z direction, and carrying a time-average power density of 2 W/m².
 (c) Give the time-varying electric and magnetic fields. (d) Is the solution unique, or is there more than one possible solution?
- 5. Find the (a) complex Poynting vector and (b) time average Poynting vector for the plane wave with electric field $\overline{E} = 3\hat{y}e^{ikz}$. (c) What is the electric field strength corresponding to 10 W/m² time average power density?
- 6. A plane wave with electric field intensity 1 V/m strikes an infinite perfect electric conductor (PEC) plane at a normal incidence angle. Find the surface current density induced on the PEC plane.